HEAD INJURY
— The illustrations on this page are black and white visuals of illustrations from Chapter 9 which will be colour on this page – Top left is Figure 9.8, top right is Figure 9.43(a), bottom left is Figure 9.43(b) and bottom right is Figure 9.58 —
HEAD INJURY

Pathophysiology and management of severe closed injury

EDITED BY

Peter Reilly MD, BMedSc, FRACS
Department of Neurosurgery, Royal Adelaide Hospital, Adelaide, Australia

and

Ross Bullock MD, PhD
Division of Neurological Surgery, Medical College of Virginia, Richmond, Virginia, USA
PART ONE: THE INJURY

1 Epidemiology
Michael R. Fearndside and Donald A. Simpson
1.1 Introduction 3
1.2 Definitions in epidemiology 3
1.3 Source data 3
1.4 Definitions and classification of head injury 4
1.5 Deaths from trauma 6
1.6 Severity of trauma 7
1.7 Population-based national studies 8
1.8 Population-based regional studies 10
1.9 Causation 10
1.10 Children 12
1.11 Minor head injury 14
1.12 Counting the cost 15
1.13 Reducing the burden 16
1.14 References 21

2 Biomechanics of closed head injury
A. J. McLean and Robert W. G. Anderson
2.1 Impact to the head 25
2.2 Response of the head to impact 27
2.3 Methods of investigation 28
2.4 Toward an understanding of brain injury mechanisms 29
2.5 Tolerance of the head to impact 34
2.6 The state of the art of head injury biomechanics 36
2.7 References 36

3 Pathology
Peter C. Blumbergs
3.1 Introduction 39
3.2 Assessment of severity of brain injury 40
3.3 The mechanism of brain injury 40
3.4 Axonal injury 41
3.5 Concussive syndromes 46
3.6 Hypoxic–ischemic damage in humans 47
3.7 Brain swelling 48
3.8 Neurotransmitter agonist–receptor abnormalities 50
3.9 Hippocampal pathology in traumatic brain injury 50
3.10 Traumatic vascular injury 50
3.11 Lacerations 55
3.12 Traumatic intracerebral hemorrhage 55
3.13 Extrudal (epidural) hemorrhage 58
3.14 Acute subdural hematoma 59
3.15 Chronic subdural hematoma 60
3.16 Other subdural fluid collections 60
3.17 Subarachnoid hemorrhage 60
3.18 Diffuse vascular injury 61
3.19 Brain-stem lesions 61
3.20 Brain damage secondary to raised intracranial pressure 63
3.21 Long-term effects 64
3.22 Post-traumatic vegetative state 64
3.23 Post-traumatic epilepsy 65
3.24 Head injury and Alzheimer’s disease 65
3.25 Brain injuries due to boxing 65
3.26 References 66

4 Primary and secondary brain injury
A. David Mendelow and Peter J. Crawford
4.1 Introduction 71
4.2 Primary brain damage 72
4.3 Secondary brain damage 73
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Extradural hematoma</td>
<td>77</td>
</tr>
<tr>
<td>4.5</td>
<td>Intradural hemorrhage</td>
<td>78</td>
</tr>
<tr>
<td>4.6</td>
<td>Intracerebral hemorrhage</td>
<td>79</td>
</tr>
<tr>
<td>4.7</td>
<td>Herniation</td>
<td>79</td>
</tr>
<tr>
<td>4.8</td>
<td>Brain swelling</td>
<td>80</td>
</tr>
<tr>
<td>4.9</td>
<td>Infection</td>
<td>83</td>
</tr>
<tr>
<td>4.10</td>
<td>Post traumatic vascular damage</td>
<td>85</td>
</tr>
<tr>
<td>4.11</td>
<td>Pyrexia following head injury</td>
<td>85</td>
</tr>
<tr>
<td>4.12</td>
<td>Conclusion</td>
<td>86</td>
</tr>
<tr>
<td>4.13</td>
<td>References</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>Brain metabolism and cerebral blood flow</td>
<td>89</td>
</tr>
<tr>
<td>Alois Zauner and J. Paul Muizelaar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>The basic principles of brain metabolism and blood flow</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>Normal values for CBF and metabolism</td>
<td>94</td>
</tr>
<tr>
<td>5.3</td>
<td>CBF and metabolism following head injury</td>
<td>95</td>
</tr>
<tr>
<td>5.4</td>
<td>References</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>Intracranial pressure and elastance</td>
<td>101</td>
</tr>
<tr>
<td>Ian Piper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>The problem: raised intracranial pressure after head injury</td>
<td>101</td>
</tr>
<tr>
<td>6.2</td>
<td>The principles: physiology and pathophysiology of intracranial pressure</td>
<td>105</td>
</tr>
<tr>
<td>6.3</td>
<td>References</td>
<td>117</td>
</tr>
<tr>
<td>7</td>
<td>Injury and cell function</td>
<td>121</td>
</tr>
<tr>
<td>Ross Bullock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>121</td>
</tr>
<tr>
<td>7.2</td>
<td>Biomechanical characteristics of neurotrauma</td>
<td>121</td>
</tr>
<tr>
<td>7.3</td>
<td>Biomechanical effects and age</td>
<td>123</td>
</tr>
<tr>
<td>7.4</td>
<td>Major vascular damage secondary to shear injury</td>
<td>126</td>
</tr>
<tr>
<td>7.5</td>
<td>Metabolic consequences of TBI</td>
<td>128</td>
</tr>
<tr>
<td>7.6</td>
<td>Intracellular mechanisms</td>
<td>133</td>
</tr>
<tr>
<td>7.7</td>
<td>Brain swelling and cellular events after neurotrauma</td>
<td>138</td>
</tr>
<tr>
<td>7.8</td>
<td>Conclusion</td>
<td>139</td>
</tr>
<tr>
<td>7.9</td>
<td>Acknowledgments</td>
<td>140</td>
</tr>
<tr>
<td>7.10</td>
<td>References</td>
<td>140</td>
</tr>
</tbody>
</table>

PART TWO: MEASURING AND MONITORING INJURY | 143 |

Introduction | 143 |

8 | Clinical examination and grading | 145 |
Donald A. Simpson		
8.1	Introduction	145
8.2	The initial examination	146

8.3 | The definitive examination | 156 |
8.4 | Evaluation of injury severity | 158 |
8.5 | References | 164 |

9 | Imaging the injury | 168 |
Evelyn Teasdale and Donald M. Hadley		
9.1	Introduction	168
9.2	The role of plain film radiography	168
9.3	CT in head injury	169
9.4	MRI in head injury	171
9.5	SPECT in head injury	172
9.6	Classification	173
9.7	Intracerebral lesions	173
9.8	Extracerebral collections	185
9.9	Pneumocephalus	197
9.10	Raised intracranial pressure and herniation	197
9.11	Patterns of ischemia	200
9.12	Radiology in the diagnosis of brain death	206
9.13	Conclusion	206
9.14	References	206

10 | Intracranial pressure monitoring | 209 |
Brian North		
10.1	Introduction	209
10.2	Historical aspects	209
10.3	Transducers	210
10.4	Methods of measuring ICP	210
10.5	Which system?	213
10.6	Interpretation of ICP monitoring	214
10.7	Conclusion	215
10.8	References	216

11 | Measuring cerebral blood flow and metabolism | 217 |
Alois Zauner and J. Paul Muizelaar		
11.1	Overview of CBF measurements	217
11.2	Xenon CBF measurements	218
11.3	Further direct clinical methods for obtaining CBF	221
11.4	Indirect methods for obtaining CBF and metabolism	222
11.5	Direct measurement of cerebral metabolism	223
11.6	Comprehensive neuromonitoring	226
11.7	References	226

12 | Electrical function monitoring | 229 |
R. J. Moulton		
12.1	Goals	229
12.2	Problems and limitations	229
12.3	Methods and modalities	230
12.4	Conclusions	240
12.5	References	240
13 Transcranial Doppler
Peter J. Kirkpatrick and Kwan-Hon Chan

13.1 Introduction 243
13.2 The theory of TCD sonography 244
13.3 TCD measurements 245
13.4 Signal processing and data collection 247
13.5 Results of analysis using TCD in head-injured patients 249
13.6 Role of TCD in monitoring therapy 254
13.7 TCD in the diagnosis of brain death 255
13.8 Summary 255
13.9 References 258

14 Magnetic resonance spectroscopy
Robert Vink

14.1 Introduction 261
14.2 Principles of magnetic resonance spectroscopy 261
14.3 MRS studies of neurotrauma 262
14.4 MRI studies of brain function 265
14.5 Conclusion 267
14.6 References 267

PART THREE: TREATMENT

15 From accident site to trauma center
J. E. Gilligan

15.1 General aspects of trauma 271
15.2 Management at the accident site 271
15.3 Transportation to and between hospitals 272
15.4 The Level 1 trauma center 273
15.5 Care of the patient in the hospital 276
15.6 Setting surgical priorities 280
15.7 Radiological examination 281
15.8 The effects of concurrent medical conditions 281
15.9 Transport modalities 283
15.10 Summary 289
15.11 References 290

16 Fluid, electrolyte and metabolic management
Peter D. Thomas

16.1 Introduction 293
16.2 Rationale of metabolic support 293
16.3 Basic principles 294
16.4 Fluid resuscitation 302
16.5 Effects of intravenous fluids on the brain 305
16.6 Metabolic response to injury 307
16.7 Fluid therapy in uncomplicated post-operative and post-traumatic states 312
16.8 Disorders of water and electrolyte balance 315
16.9 Special fluid and electrolyte problems in the neurosurgical patient 326
16.10 Conclusions 327
16.11 References 327

17 Respiratory and cardiovascular support
John A. Myburgh

17.1 Introduction 333
17.2 Physiology 334
17.3 Effects of head injury upon oxygen delivery 338
17.4 Management: resuscitation 340
17.5 Management: maintenance of cardio-pulmonary–cerebral homeostasis 343
17.6 Conclusion 357
17.7 References 358

18 Sedation and anesthesia
Guy L. Ludbrook

18.1 Introduction 363
18.2 Cerebral pharmacology 363
18.3 Intravenous anesthetic agents 363
18.4 Muscle relaxants 367
18.5 Inhaled anesthetic agents 369
18.6 Other agents used in neuroanesthesia 371
18.7 Conduct of anesthesia in severe head injury 373
18.8 Emergence and recovery 379
18.9 References 380

19 Management of intracranial pressure and cerebral perfusion
Peter Reilly

19.1 Introduction 385
19.2 Intracranial pressure 385
19.3 Cerebral perfusion pressure 388
19.4 Intracranial volumes 388
19.5 Volume–pressure relations 388
19.6 Principles of management 390
19.7 Treatment 393
19.8 Surgical treatment 400
19.9 Plan of management of raised ICP and reduced CPP 401
19.10 References 405

20 The role of surgery for intracranial mass lesions after head injury
Nigel Jones, Ross Bullock and Peter Reilly

20.1 Introduction 409
20.2 Post-traumatic lesions on CT 409
CONTENTS

20.3 Indications for evacuation of intracranial hematomas 409
20.4 Techniques for craniotomy 411
20.5 Specific surgical problems 416
20.6 References 421

21 Neuroprotection in head injury
Graham M. Teasdale and Paul E. Bannan

21.1 Introduction 423
21.2 From preclinical research to clinical benefit 424
21.3 Treatments undergoing clinical evaluation 425
21.4 Conclusion 435
21.5 References 436

22 Outcome after severe head injury
Bryan Jennett

22.1 Outcome after severe head injury 439
22.2 Glasgow Outcome Scale 439
22.3 When to assess outcome 442
22.4 Ethical issues 443
22.5 Brain death 444
22.6 The vegetative state 447
22.7 Neurophysical sequelae in conscious survivors 449
22.8 Cerebral hemispheres 449
22.9 Cranial nerve deficits 450
22.10 Delayed complications 451
22.11 Mental sequelae 454
22.12 Deficits of intellectual (cognitive) function 454
22.13 Personality change 457
22.14 References 459

Appendices

A Antibiotics recommended for infections of the CNS 463
B Seizure management in acute head injury 464
C Possible causes of status epilepticus after head injury 464
D Cardiovascular drugs used for augmentation of cerebral perfusion pressure 465

Index 467
CONTRIBUTORS

Robert W. G. Anderson BE
Road Accident Research Unit,
University of Adelaide,
Adelaide,
Australia

Paul E. Bannan FRACS
Department of Neurosurgery,
Royal Perth Hospital,
Perth,
Australia

Peter C. Blumbergs FRACP, FRCPA
Department of Neuropathology,
Institute of Medical and Veterinary Sciences,
Adelaide,
Australia

Ross Bullock MD, PhD
Division of Neurological Surgery,
Medical College of Virginia,
Richmond,
Virginia,
USA

Kwan-Hon Chan MS, FRCS
Division of Neurological Surgery,
University of Hong Kong,
Queen Mary Hospital,
Hong Kong

Peter J. Crawford BSc, FRCS
Department of Neurosurgery,
Newcastle General Hospital,
Newcastle upon Tyne,
UK

Michael R. Fearnside MS, FRACS
Department of Neurosurgery,
Westmead Hospital,
Westmead,
Australia

J. E. Gilligan FANZCA, FFICANZCA
Intensive Care Unit,
Royal Adelaide Hospital,
Adelaide,
Australia

Donald M. Hadley PhD, FRCR
Department of Neuroradiology,
Institute of Neurological Sciences,
Southern General Hospital,
Glasgow,
UK

Bryan Jennett CBE, MD, FRCS
Department of Neurosurgery,
Institute of Neurological Sciences,
Southern General Hospital,
Glasgow,
UK

Nigel Jones DPhil, FRACS
Department of Neurosurgery,
Royal Adelaide Hospital,
Adelaide,
Australia

Peter J. Kirkpatrick BSc, MSc, FRCS(SN)
Academic Department of Neurosurgery,
Addenbrooke’s Hospital,
Cambridge,
UK
x CONTRIBUTORS

Guy L. Ludbrook FANZCA
Department of Anaesthesia,
Royal Adelaide Hospital,
Adelaide,
Australia

A.J. McLean BE, ME, SMHygSD
Road Accident Research Unit,
University of Adelaide,
Adelaide,
Australia

A. David Mendelow PhD, FRCS(SN)
Department of Neurosurgery,
Newcastle General Hospital,
Newcastle upon Tyne,
UK

R. J. Moulton MD, FRCS(C)
Division of Neurosurgery,
University of Toronto,
Toronto,
Canada

J. Paul Muizelaar MD
Division of Neurological Surgery,
Medical College of Virginia,
Richmond,
Virginia,
USA

John A. Myburgh DA(SA), FANZCA, FFICANZCA
Intensive Care Unit,
Royal Adelaide Hospital,
Adelaide,
Australia

Brian North RFD, FRCS, FRACS
Department of Neurosurgery,
Royal Adelaide Hospital,
Adelaide,
Australia

Ian Piper PhD
Department of Clinical Physics,
Institute of Neurological Sciences,
Southern General Hospital,
Glasgow,
UK

Peter L. Reilly MD, BMesSc, FRACS
Department of Neurosurgery,
Royal Adelaide Hospital,
Adelaide,
Australia

Donald A. Simpson AM, MS, FRCS, FRACS
Road Accident Research Unit,
University of Adelaide,
Adelaide,
Australia

Evelyn Teasdale MRCP, FRCR
Department of Neuroradiology,
Institute of Neurological Sciences,
Southern General Hospital,
Glasgow,
UK

Graham M. Teasdale FRCP, FRCS (Edinb. and Glasg.)
Department of Neurosurgery,
Institute of Neurological Sciences,
Southern General Hospital,
Glasgow,
UK

Peter D. Thomas FRACP, FANZCA, FFICANZCA
Intensive Care Unit,
Royal Adelaide Hospital,
Adelaide,
Australia

Robert Vink PhD
Department of Physiology and Pharmacology,
James Cook University of North Queensland,
Townsville,
Australia

Alois Zauner MD
Division of Neurological Surgery,
Medical College of Virginia,
Richmond,
Virginia,
USA
Brain injury remains one of the most difficult and challenging problems facing many clinicians, particularly neurosurgeons and intensivists. In major trauma centers there has been a steady decline in the mortality rate due to severe head injury of about 10% per decade since the mid 1970s, but this does not seem to be reflected in an overall population-based decline, even in ‘developed’ countries (Jennett et al., 1977; Klauber et al., 1989; Marshall et al., 1991; Waxweiler et al., 1996). This suggests that a more widespread application of modern principles of neurotrauma care could save many lives throughout the world. It is the goal of this book to provide a theoretical and practical foundation upon which such care can be based.

We wish to thank our colleagues who have contributed their tremendous expertise to these chapters. We owe a strong debt of gratitude to the Glasgow school, and in particular to Bryan Jennett and Graham Teasdale, both of whom have contributed fundamentally to our own views on head injury and indeed to all neurosurgeons. We also wish to acknowledge the outstanding contribution to neurotrauma made by our friend the late Douglas Miller. The originality and clarity of his thoughts and words have challenged and enlightened all those seeking to understand more clearly the complexity of brain injury.

Peter Reilly and Ross Bullock
Adelaide, South Australia and Richmond, Virginia, December 1996

References